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1 Introduction

Despite of the great success of QCD in describing the strong interaction, the low-energy

(infra-red) regime, where quarks and gluons are strongly coupled, remains notoriously

difficult. Despite a lack of analytical proof of color confinement, we are confident that

quarks are confined by a strong force to form mesons and baryons.

One of the interesting aspects of the hadronic spectrum is that both mesons and

baryons fall into a linear Regge trajectory of the form

J = α0 + α′M2 , (1.1)

where α′ ∼ 0.89GeV−2 is called the Regge slope. A Regge trajectory for mesons can be

easily explained by string theory (see [1] for a recent work). A fastly rotating relativistic

string admits the relation M2 = 2πσJ and hence an intuitive picture of the Regge phe-

nomenon is that the flux tube that connects the quark anti-quark pair behaves like a string

with σ = 1
2πα′ . This string is often called the QCD-string.

It is less obvious why baryons admit a linear Regge trajectory and why the Regge slope

of mesons and baryons is the same. A possible explanation (see a review by Wilczek [2])

is that the baryon structure is similar to the meson structure: the baryon is composed

of a quark and a diquark connected by a single long string. It is not clear whether a

generalization of this picture applies to SU(N), or whether it holds for SU(3) only.

In this paper we propose a new explanation for the coincidence of the Regge slopes of

baryons and mesons. Our derivation is based on “orientifold planar equivalence”.

“Orientifold planar equivalence” is the statement that an SU(N) gauge theory with a

massless Dirac fermion in the antisymmetric representation (commonly called “orientifold

field theory”) becomes equivalent in a certain well-defined sector to SU(N) N = 1 Super
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Yang-Mills [3, 4]. A necessary and sufficient condition for the equivalence is an unbro-

ken charge conjugation symmetry [5]. Provided that the equivalence holds it enables us

to copy results from the supersymmetric theory to the non-supersymmetric theory [6].

Moreover, since for SU(3) the fundamental and the anti-symmetric representation are

equivalent to each other, planar equivalence provides a way to estimate non-perturbative

quantities in QCD by copying them from N = 1 super Yang-Mills. It led to various analyt-

ical non-perturbative results in QCD, including a calculation of the quark condensate [7],

see review [8].

The idea of the present paper is to describe the meson and the baryon in the “orientifold

theory” by operators whose mass spectra become at large-N degenerate via the relation

with super Yang-Mills. Briefly, the meson is a quark anti-quark pair connected by a

QCD-string and the baryon is a quark quark pair connected by a string which contains

an anti-symmetric fermion smeared on it.1 We show that the two QCD-strings become

superpartners at infinite N . Therefore, in our picture, the meson and the baryon Regge

slopes are degenerate due to supersymmetric relics in QCD [6]. A related, however different,

“effective supersymmetry” was assumed in [10–12] in order to explain spectra degeneracies

between mesons and baryons.

Throughout the paper we will use a version of the Corrigan-Ramond model [13]. We

will consider an SU(N) gauge theory with one massless quark in the two-index antisym-

metric representation (denoted by Ψ) and two additional massive quarks (denoted by Q).

In the limit N → ∞ the dynamics of the model becomes equivalent to the dynamics of

N = 1 SYM [14]. Moreover, for SU(3) it reduces to QCD with one massless quark and two

additional massive quarks. Note that the interpolation from SU(3) to SU(N) with N > 3

is smooth, since even for SU(3) the flavor symmetry is U(1) × SU(2), as the fundamental

quarks are massive.

Our picture of the baryon is similar to the quark-diquark picture in the sense that there

is only one long QCD-string in the baryon. However, in our picture there is a smeared

quark along the string, whereas in the quark-diquark picture there is one quark at one end

of the string and two quarks at the other end.

2 Meson and baryons in “orientifold field theories”

Consider an SU(N) gauge theory with one massless Dirac fermion Ψ in the two-index

antisymmetric representation and one or more Dirac fermions Q in the fundamental repre-

sentation. Let us consider the following operators (in the Hamiltonian formalism, therefore

A0 = 0; see appendix. A for a review of the main concepts)

M = Q̄j(x0)

(

Pexp i

∫ x1

x0

~A(y)d~y

)i

j

Qi(x1) (2.1)

Bα =

∫

d~z QC
j (x0)

(

Pexp i

∫ z

x0

~A(y)d~y

)j

k

~γαβΨ̄
[kl]
β (z)

(

Pexp i

∫ x1

z

~A(y)d~y

)i

l

Qi(x1) .

1There are other generalizations of baryons in “orientifold theories”, see [9] and references therein.
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We assume the same path connecting x and y for both M and B. z is an intermediate

point along this path. At any N , M is a bosonic operator and B is a fermionic operator (α

is its spin index). We define QC = QTC where C is the charge-conjugation matrix acting

on the spin index. Assigning to Q and Ψ respectively baryonic numbers 1/3 and −1/3, the

operator M create a mesonic state (though it is an eigenvalue neither of the Hamiltonian

nor of the angular momentum), while the operator B creates a baryonic state, built with

two quarks Q and a fermion Ψ̄. We think about M and B as a generalization of ordinary

mesons and baryons in QCD. Indeed since for SU(3) qi = 1
2ǫijkΨ̄

[jk], the fermion Ψ̄ can

be equivalently replaced by one more quark in the fundamental representation, and the

baryonic number defined above is nothing but the usual baryonic number of QCD. This

generalization of baryons was firstly proposed by Corrigan and Ramond in ref. [13].

It is well known that at high angular momentum (but below the string-breaking en-

ergy), the mesons are effectively described by a relativistic semiclassical quark-antiquark

pair, connected by a bosonic string. The Regge slope of mesons made of light quarks is

related to the tension σb of the bosonic string (see for instance [15]):

α′
M =

1

2πσb
. (2.2)

In a theory with Ψ fermions, a fermionic string is present as well. Microscopically it can be

thought as a chromoelectric flux with a Ψ fermion smeared in it. In analogy with mesons,

baryons of the kind generated by the operator B are effectively described by a relativistic

semiclassical quark-quark pair, connected by a fermionic string. This description implies a

Regge trajectory for baryons made of light quarks, and the slope is related to the tension

σf of the fermionic string:

α′
B =

1

2πσf
. (2.3)

We want to show that in the large-N limit the two string tensions are equal, proving this

way the equality of the Regge slopes.

The strategy is the following. We consider infinitely heavy quarks Q and we use them

to probe the string states. Even if mesons and baryons made of heavy quarks do not follow

the Regge trajectory in the form (1.1) (but the mass gets a shift [15]), we will be able

in this sector to get the degeneracy of the bosonic and fermionic string tensions. Light

quarks Q do not spoil the degeneracy at large N of the string tensions. In fact charges

in the fundamental representation are quenched in the large-N limit, therefore the string

tensions do not depend on the mass of the quarks Q.

Assuming then heavy quarks Q, we decompose the states obtained with the operators

M and B acting on the vacuum in eigenstates of the Hamiltonian (see appendix B for the

definition of these states). At large separation R of the heavy quarks, the energy states

are proportional to R:

M |0〉 =
∑

nr

Mnr |n, r〉b (2.4)

H |n, r〉b = σb
nR |n, r〉b +O(R0) (2.5)
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Bα |0〉 =
∑

nr

Bαnr |n, r〉f (2.6)

H |n, r〉f = σf
nR |n, r〉f +O(R0) (2.7)

where the superscripts b/f stand for bosonic or fermionic and r is an index running on

all the degenerate states (if any) in the same energy level n. The set of states |n, r〉b/f

are supposed to be an orthonormal basis of the Hilbert subspace describing the system

in presence of two static charges in x0 and x1. Since for SU(3) this theory is ordinary

QCD, we will refer to the sets {σb
n} and {σf

n} respectively as the spectra of the bosonic

and fermionic QCD-strings.

Let us discuss the relation with N = 1 super Yang-Mills. We replace in (2.1) the

antisymmetric fermion by an adjoint fermion, and some heavy quarks by heavy anti-quarks

where necessary

M̃ = Q̄j(x0)

(

Pexp i

∫ x1

x0

~A(y)d~y

)i

j

Qi(x1) (2.8)

B̃α =

∫

d~z Q̄j(x0)

(

Pexp i

∫ z

x0

~A(y)d~y

)k

j

~γαβλ
l
kβ(z)

(

Pexp i

∫ x1

z

~A(y)d~y

)i

l

Qi(x1) .

As we will see later on, planar equivalence implies that at large-N the spectrum of the

QCD-strings in the orientifold theory coincides with the spectrum of the effective strings

in super Yang-Mills, which we show to be boson/fermion degenerate.

The result is not obvious because the presence of the static charges explicitly breaks

SUSY, since we do not introduce heavy squarks as well. We will argue, however, that

the spin of the charges at the end-points of the QCD-string should not affect its tension.

In particular, having only quarks (and not squarks) at the end-points will not spoil the

boson/fermion degeneracy.

If we consider SUSY transformations in the de Wit-Freedman form [16], in the Hamilto-

nian gauge and without squarks (Sα is the supercharge in the 4-component spinor notation)

[S,Aa
k] = γkλ

a (2.9)
[

Sα, λ
a
β

]

= −1

4
F a

µν [γµ, γν ]αβ (2.10)

[Sα, Qiα] = 0 (2.11)
∑

α

(S†)αSα = 4HSYM (2.12)

then the variation of the Hamiltonian is in general not zero, but is proportional to the

chromoelectric charge density of the heavy quarks (see appendix C for more details):

[S,HSYM] =

∫

d3x γ0λ
aQ†taQ . (2.13)

Chosen a bosonic state |n, r〉b, from equation (2.12) we get:

4σb
nR =

∑

α

b〈n, r| (S†)αSα |n, r〉b =
∑

α,n′,r′

∣

∣

∣

f
〈

n′, r′
∣

∣Sα |n, r〉b
∣

∣

∣

2
(2.14)
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which means that at least one fermionic state |n′, r′〉f and one spin component α exist with

the following property:
f
〈

n′, r′
∣

∣Sα |n, r〉b = O
(√

R
)

. (2.15)

Now we can compute the element matrix of the commutator [Sα,H] between this pair of

states, using equation (2.13)

(σb
n − σf

n′)
f
〈

n′, r′
∣

∣Sα |n, r〉b =
1

R
f
〈

n′, r′
∣

∣

∫

d3x (γ0λ
a)αQ

†taQ |n, r〉b . (2.16)

Being the chromoelectric charge density localised only in the points x0 and x1, we expect

that at large charge separation, R → ∞, the r.h.s. of equation (2.16) will vanish. The

reason is that the charge density is not expected to give rise to a linear dependence on R.

As a result,

σb
n = σf

n′ . (2.17)

At large R the energy levels are Fermi/Bose degenerate and we can reorganise the nu-

meration of the fermionic levels requiring that n′ = n. The formalism above translates in

mathematical terms the idea that SUSY is broken only by boundary terms and therefore

is recovered in the limit of large charge separation R.

The operators M̃ and B̃ are connected by a SUSY transformation

[

Sα, M̃
]

= B̃α . (2.18)

This implies that the operator B̃α creates a baryon in an energy level n with non-vanishing

amplitude if and only if the operator M̃ creates a meson in the same energy level (at the

leading order in R) with non-vanishing amplitude.

By copying the above result to the “orientifold theory” we conclude that the QCD-

string tension of the meson is identical to the QCD-string tension of the baryon. In other

words the Regge slope of mesons and baryons is identical at large-N . Another observa-

tion is that for SU(2) the antisymmetric fermion becomes a singlet and therefore in this

limit the mass spectra of M and B become degenerate. For this reason we expect that

the 1/N corrections will not be large and therefore the large-N result should be a good

approximation for QCD.

It is possible to re-formulate the above discussion in terms of Polyakov loops. Despite

of the equivalence of the two formulations, the derivation via Polyakov loops will enable

an easier connection with type 0’ string theory. We will also able to see how orientifold

planar equivalence can be extended in the string sector.

We consider the orientifold theory on the Euclidean space R3 × S1. We assume that

the circle is large and that the theory is in the confining phase, namely that the expectation

value of a Polyakov loop that wraps the circle is zero 〈P (x)〉 = 0.

Consider the two-point function

〈ReP (x)ReP (y)〉 , (2.19)

where x, y are coordinates in R3.

– 5 –
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Q
a. b.

Figure 1. The open QCD-string spectra of the orientifold theory. a. Oriented (bosonic) strings.

b. Un-oriented (fermionic) strings.

Being ReP a bosonic operator invariant under charge conjugation (i.e. it belongs to

the neutral sector), by orientifold planar equivalence the above correlator (2.19) is equal to

the same correlator in pure N = 1 Super Yang-Mills [5], and expanding the real part we get

〈P (x)P (y)〉Orienti + 〈P (x)P †(y)〉Orienti = 〈P (x)P †(y)〉SUSY . (2.20)

We used the charge conjugation invariance of both the theories, and the invariance of the

N = 1 SYM under the global ZN center symmetry, which implies that the correlator

〈P (x)P (y)〉SUSY identically vanishes. In the orientifold theory the fermions respect only a

Z2 global symmetry [17] hence 〈P (x)P (y)〉Orienti does not need to vanish.

The correlator 〈P (x)P †(y)〉Orienti is saturated by open QCD-strings with a heavy quark

and a heavy anti-quark at their ends, namely by oriented open strings

〈P (x)P †(y)〉Orienti =
∑

n

Ab
n exp−βσb

n|x− y| . (2.21)

The correlator 〈P (x)P (y)〉Orienti is saturated by open strings which contain heavy quarks

at both ends. Thus these string are unoriented

〈P (x)P (y)〉Orienti =
∑

n

Af
n exp−βσf

n|x− y| . (2.22)

The string spectra of the orientifold theory is depicted in figure 1 below. We identify the

oriented string (which contains a quark and an anti-quark at its ends) with the meson

string and the unoriented string (which contain quarks at both ends) with the baryon

string of (2.1).

In N = 1 SYM the correlator 〈P (x)P †(y)〉SUSY is saturated by oriented strings. These

strings are both bosonic and fermionic. In the large N limit the orientifold planar equiva-

lence (2.20) gives

〈P (x)P †(y)〉SUSY =
∑

n

Ab
n exp−βσb

n|x− y| +
∑

n

Af
n exp−βσf

n|x− y| . (2.23)

and finally supersymmetry implies that

σb
n = σf

n . (2.24)
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which means that the large-N orientifold theory exhibits a degeneracy between the bosonic

and the fermionic strings.

The above analysis is in perfect agreement with Sagnotti’s model (type 0’ string the-

ory) [18, 19]. The SU(N) gauge theory with an antisymmetric (or symmetric) fermion

lives on a stack of D-branes in type 0’ string theory. The open string spectrum contains

both bosons and fermions. The bosonic open strings are oriented and the fermionic open

strings are unoriented. Although this string theory is non-supersymmetric, the spectra of

open strings exhibits a Bose-Fermi degeneracy.

3 Conclusions

In conclusion, we showed that we can generalize QCD in such a way that both the mesons

and the baryons are represented by an open string. The meson is a bosonic oriented string

and the baryon is a fermionic un-oriented string. The two kinds of open strings admit

the same Regge slope. Our assumptions were mild: we assumed that planar equivalence

holds and that the color-singlet spectrum of N = 1 super Yang-Mills contains stringy like

objects. It will be interesting to perform a lattice simulation which will enable to confirm

our result and to estimate the 1/N corrections. Finally, it will be interesting to explore

the relation between our approach and “effective supersymmetry” [10–12].

Acknowledgments
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A Review of gauge theories in the Hamiltonian formalism

In this appendix we want to review the main concepts, which are useful in this work, about

SU(N) gauge theories in the Hamiltonian formalism. The main ingredients are:

• the Hilbert space defined as the space of the wave functions over the classical field

configurations;

• the Gauss constrain which restricts the physical subspace of the Hilbert space, by

requiring invariance under local gauge transformations;

• the Hamiltonian which defines the dynamics of the system.

All the formulae which follow make sense only once a regularization and renormalization

scheme is fixed. However for sake of simplicity, the regularization will be kept implicit.

The canonical degrees of freedom are the spatial gauge field AA
i (the Hamiltonian

gauge A0 = 0 is assumed), the chromoelectric field EA
i , and the matter field ψ (which we

will assume in the generic representation R of the gauge group). The canonical variables

satisfy the following (anti)commutation relationships:

[

EA
i (x), AB

j (y)
]

= −ig2δABδijδ
3(x− y) , (A.1)

– 7 –
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{ψa(x), ψ̄b(y)} = γ0δabδ3(x− y) , (A.2)

where a, b are the colour indexed in the representation R.

The Hamiltonian is given by:

H =

∫
[

1

2g2
EA

i E
A
i +

1

2g2
BA

i B
A
i + iψ̄γiD

R
i ψ

]

d3x , (A.3)

where BA
i = 1

2ǫijkF
A
jk is the chromomagnetic field, and DR

i = ∂i + iTA
RA

A
i is the covari-

ant derivative.

The Hamiltonian is invariant under local gauge transformations, whose generators are:

GA(x) =
1

g2
DiE

a
i (x) + ψ†TA

Rψ(x) . (A.4)

The physical states are defined to be invariant under local gauge transformations, and this

condition is the Gauss constrain without any external source:

GA |ψphys〉 = 0 . (A.5)

The partition function is given by the trace of e−βH , discarding the non-physical states.

This can be achieved by introducing the projector onto the physical states; it is defined as:

P0 =

∫

exp

{

−i
∫

GA(x)ωA(x)d3x

}

DΩ[ω] , (A.6)

where exp{−i
∫

GA(x)ωA(x)d3x} is the operator representing the gauge transformation

Ω[ω] = exp{−iTAωA} on the Hilbert space, and the Haar measure projects on the singlet

states. In the path integral formalism, ωA(x) which plays the role of a Lagrangian multiplier

in the Hamiltonian formalism becomes the AO(x) component of the gauge field, while Ω(x)

is the Polyakov loop. Finally the partition function is:

Z = Tr
[

P0e
−βH

]

. (A.7)

B Static heavy fundamental charges

In this appendix we consider a gauge theory with dynamical matter, coupled with two

static heavy charges in the fundamental or antifundamental representations, which we will

call respectively quark and antiquark. We start with a static heavy quark in the spatial

point x1, and a static heavy antiquark in x2. The interaction Hamiltonian is given by:

Hint = −
∫

AA
i Q̄γiT

AQd3x , (B.1)

but, since the heavy quarks are static, the current Q̄γiT
AQ is zero, and the dynamical

sector evolves with the same Hamiltonian (A.3), as it were not coupled to any static

charges. However the quarks modify the Gauss law. The physical states of the whole system

(heavy charges plus dynamical degrees of freedom) must be invariant under local gauge

– 8 –
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transformation. This means that the states of the dynamical sector must transform as the

antifundamental representation under gauge transformations in x1, and as the fundamental

representation under gauge transformations in x2. We will refer to these, as the states of

the effective oriented string connecting the two heavy charges. The projector on the space

of the oriented string states is:

PQQ̄(x1, x2) =

∫

exp

{

i

∫

GA(x)ωA(x)d3x

}

tr Ω(x1)tr Ω(x2)
†DΩ[ω] . (B.2)

The last equation essentially comes from the orthogonality of the characters with respect

to the integration with the Haar measure. The partition function of the gauge theory in

presence of the two heavy charges is therefore given by:

ZQQ̄(β, |x1 − x2|) = Tr
[

PQQ̄(x1, x2)e
−βH

]

. (B.3)

In the path integral formalism, the partition function ZQQ̄(β, |x1 −x2|) is proportional

to the expectation value of two Polyakov loops Ω(x) in the appropriate representations:

ZQQ̄(β, |x1 − x2|) = Z(β)〈tr Ω(x1)tr Ω(x2)
†〉 . (B.4)

Since the Hamiltonian commutes with the gauge transformations, it can be diago-

nalized on the space of the string states. In case of dynamical matter in the adjoint

representation, there are both bosonic and fermionic states. This can be easily understood

considering that an arbitrary numbers of gluinos can be inserted in the flux tube; an even

number of gluinos gives rise to bosonic states, while an odd number of gluinos gives rise

to fermionic states. The eigenvalues are functions of the distance R = |x1 − x2|. The

bosonic eigenstates |n, r〉b have eigenvalue V b
n,r(R); and the fermionic eigenstates |n, r〉f

have eigenvalue V f
n,r(R):

H |n, r〉b = V b
n,r(R) |n, r〉b , (B.5)

H |n, r〉f = V f
n,r(R) |n, r〉f . (B.6)

The eigenvalues are organized with respect to their large distance behaviour:

V b
n,r(R) = σb

nR+ O(R0) , (B.7)

V f
n,r(R) = σf

nR+ O(R0) . (B.8)

By expanding the trace of the partition function in eq. (B.4) with respect this basis of

states we get for the correlators of Polyakov loops:

〈tr Ω(x1)tr Ω(x2)
†〉SYM =

1

ZSYM(β)

{

∑

n,r

e−βV b
n,r(R) +

∑

n,r

e−βV f
n,r(R)

}

. (B.9)

In the case of dynamical matter in the antisymmetric representation, for gauge in-

variance only an even number of dynamical fermions can be inserted in the flux tube

– 9 –
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connecting a QQ̄ pair. This means that the oriented string states in the orientifold theory

are purely bosonic.

〈tr Ω(x1)tr Ω(x2)
†〉Orienti =

1

ZOrienti(β)

∑

n,r

e−βV b
n,r(R) . (B.10)

However in the orientifold theory, string states exist connecting a static heavy quark in x1,

and another static heavy quark in x2. We will refer to these as the states of the unoriented

string. The projector onto the unoriented string states is:

PQQ(x1, x2) =

∫

exp

{

i

∫

GA(x)ωA(x)d3x

}

tr Ω(x1)tr Ω(x2)DΩ[ω] . (B.11)

For gauge invariance an odd number of dynamical fermions must be inserted in the flux

tube to connect a QQ pair. This means that the unoriented string states in the orientifold

theory are purely fermionic. Following the same construction as above, we get:

〈tr Ω(x1)tr Ω(x2)〉Orienti =
1

ZOrienti(β)

∑

n,r

∑

n,r

e−βV f
n,r(R) . (B.12)

C SYM in the Hamiltonian formalism

In the case of SYM, the formulae of appendix A must be generalized to the case of a Ma-

jorana fermion λA in the adjoint representation of the gauge group. Using four-component

spinors, the Majorana fermion obeys the constrain λA
α = Cαβ λ̄

A
β where C is the charge

conjugation matrix. With the normalization given by:

{λA(x), λ̄B(y)} = g2γ0δABδ3(x− y) , (C.1)

the SYM Hamiltonian is:

H =

∫
[

1

2g2
EA

i E
A
i +

1

2g2
BA

i B
A
i +

i

2g2
λ̄AγiDiλ

A

]

d3x , (C.2)

and the generator of the local gauge transformation is:

GA(x) =
1

g2
DiE

a
i (x) +

1

2g2
λ†TAλ(x) . (C.3)

The supersymmetric charge can be introduced in the (on-shell) de Wit-Freedman form:

[

S,AA
i (x)

]

= γiλ
A(x) , (C.4)

{Sα, λ
A
β (x)} = −1

4
FA

µν(x)[γµ, γν ]αβ . (C.5)

In terms of the elementary fields the supercharge is:

S =

∫

{

iEA
k γk +BA

k γ5γk

}

λA d3x . (C.6)
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It obeys the Majorana condition Sα = CαβS̄β, is invariant under spatial translations and

local gauge transformations. It does not commute with the Hamiltonian, but:

[S,H] =

∫

γ0λAGA d3x . (C.7)

It is worth to remind at this point that we are assuming that the theory is properly

regularized and renormalized. The equation above is valid only if a regularization scheme

which preserves SUSY is chosen, otherwise the commutation relationship gets an extra

SUSY violating term, which must vanish as the cutoff is removed.

On the physical states, the supercharge commutes with the Hamiltonian as expected

thanks to the Gauss constrain:

[S,H] |ψphys〉 = 0 , (C.8)

while this is not true for instance on the string states.

Moreover the anticommutator of two supercharges is given by:

{S, S̄} = 2
(

γ0H − γkΠk

)

, (C.9)

where Πk are the gauge invariant generalization of the spatial momenta Pi:

Πk =

∫
{

ǫkijE
A
i B

A
j +

i

2
λ̄Aγ0Dkλ

A

}

d3x = Pk +

∫

AA
k G

A d3x . (C.10)

Again, on the physical states the operators Πi and Pi are identical thanks to the Gauss law.
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